Alloxan-induced diabetes reduces sarcolemmal Na+-K+ pump function in rabbit ventricular myocytes.

نویسندگان

  • Peter S Hansen
  • Ronald J Clarke
  • Kerrie A Buhagiar
  • Elisha Hamilton
  • Alvaro Garcia
  • Caroline White
  • Helge H Rasmussen
چکیده

The effect of diabetes on sarcolemmal Na(+)-K(+) pump function is important for our understanding of heart disease associated with diabetes and design of its treatment. We induced diabetes characterized by hyperglycemia but no other major metabolic disturbances in rabbits. Ventricular myocytes isolated from diabetic rabbits and controls were voltage clamped and internally perfused with the whole cell patch-clamp technique. Electrogenic Na(+)-K(+) pump current (I(p), arising from the 3:2 Na(+)-to-K(+) exchange ratio) was identified as the shift in holding current induced by Na(+)-K(+) pump blockade with 100 micromol/l ouabain in most experiments. There was no effect of diabetes on I(p) recorded when myocytes were perfused with pipette solutions containing 80 mmol/l Na(+) to nearly saturate intracellular Na(+)-K(+) pump sites. However, diabetes was associated with a significant decrease in I(p) measured when pipette solutions contained 10 mmol/l Na(+). The decrease was independent of membrane voltage but dependent on the intracellular concentration of K(+). There was no effect of diabetes on the sensitivity of I(p) to extracellular K(+). Pump inhibition was abolished by restoration of euglycemia or by in vivo angiotensin II receptor blockade with losartan. We conclude that diabetes induces sarcolemmal Na(+)-K(+) pump inhibition that can be reversed with pharmacological intervention.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Amiodarone inhibits the Na(+)-K+ pump in rabbit cardiac myocytes after acute and chronic treatment.

Amiodarone has been shown to affect cell membrane physicochemical properties, and it may produce a state of cellular hypothyroidism. Because the sarcolemmal Na(+)-K+ pump is sensitive to changes in cell membrane properties and thyroid status, we examined whether amiodarone affected Na(+)-K+ pump function. We measured Na(+)-K+ pump current (Ip) using the whole-cell patch-clamp technique in singl...

متن کامل

Hyperaldosteronemia in rabbits inhibits the cardiac sarcolemmal Na(+)-K(+) pump.

Aldosterone upregulates the Na(+)-K(+) pump in kidney and colon, classical target organs for the hormone. An effect on pump function in the heart is not firmly established. Because the myocardium contains mineralocorticoid receptors, we examined whether aldosterone has an effect on Na(+)-K(+) pump function in cardiac myocytes. Myocytes were isolated from rabbits given aldosterone via osmotic mi...

متن کامل

Na+ influx and Na+-K+pump activation during short-term exposure of cardiac myocytes to aldosterone.

To examine the effect of aldosterone on sarcolemmal Na+ transport, we measured ouabain-sensitive electrogenic Na+-K+pump current ( I p) in voltage-clamped ventricular myocytes and intracellular Na+ activity ([Formula: see text]) in right ventricular papillary muscles. Aldosterone (10 nM) induced an increase in both I p and the rate of rise of [Formula: see text] during Na+-K+pump blockade with ...

متن کامل

Mechanisms of Na+-K+pump regulation in cardiac myocytes during hyposmolar swelling.

We have previously demonstrated that the sarcolemmal Na+-K+pump current ( I p) in cardiac myocytes is stimulated by cell swelling induced by exposure to hyposmolar solutions. However, the underlying mechanism has not been examined. Because cell swelling activates stretch-sensitive ion channels and intracellular messenger pathways, we examined their role in mediating I pstimulation during exposu...

متن کامل

Mineralocorticoid and angiotensin receptor antagonism during hyperaldosteronemia.

Elevated aldosterone levels induce a spironolactone-inhibitable decrease in cardiac sarcolemmal Na+-K+ pump function. Because pump inhibition has been shown to contribute to myocyte hypertrophy, restoration of Na+-K+ pump function may represent a possible mechanism for the cardioprotective action of mineralocorticoid receptor (MR) blockade. The present study examines whether treatment with the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 292 3  شماره 

صفحات  -

تاریخ انتشار 2007